
Building Compiler-Student Friendship

Zhongxiu Liu and Tiffany Barnes

North Carolina State University
Raleigh, NC 27695

Abstract. Previous studies have shown that compilers positively influ-
ence students when they are designed to build connections with stu-
dents. In this paper, I propose to study the use of a friendly compiler
for young novice programmers. This study involves designing compiler
messages that incorporate a friendship model. The goal is to make stu-
dents view compiler as a friend, instead of as an error-picking authority.
I hypothesize that a good compiler-student relationship will change stu-
dents’ attitude, self-efficacy and motivation towards programming, as
well as change students compilation behaviors.

1 Introduction

The relationship between students and their peers or teachers influences many
aspects of learning. Liem et al.[9] found that a good peer relationship has a
positive effect on learning outcomes, mastery, and students’ self-efficacy. More
specifically, Bickmore and Picard[2] found that a safe communication climate,
characterized by support, openness, trust and mutual respect, positively influ-
ences students’ self-efficacy. In Will et al.[10] study, teachers’ verbal immediacy
was found to be positively associated with learning.

Traditional compilers are not usually designed with the goal of building a
relationship with the users. This may hinder novice programmers. Kinnunen [7]
found that novice programmers frequently reflected on their own incapability
when encountered difficulties. Traditional compilers repeatedly tells students
what they have done wrong, which could anguish the feeling of personal failure.
Bosch et al.[3] found boredom as one of the most common emotions experienced
by first-time programmer, and was negatively correlated with debugging and
programming performance. I believe that traditional compilers contribute to
boredom, because they do not convey the warmness, happiness or willingness to
engage students in their conversations.

Previous research has shown promising results when programming environ-
ments are designed to build connections with students. Lee and Ko[8] designed
a game where students used a gamified programming language. In the experi-
mental group, the compiler was represented as a fallible and self-blaming robot
character. The study found that students in the experimental group completed
more tasks, and were more likely to state that they ”want to help the robot
succeed”. Boyer[4] added a dialog-based tutor to a Java programming task. The
tutor read the compilation messages, and conducted conversations with students



based on a corpus of real student-tutor dialogues. The study found that praise,
reassurance, and dialogues with positive cognitive feedback increased students
self-confidence with programming. However, these studies only evaluated designs
that add to a specific programming environment and tasks. They did not develop
a general purpose compiler or focus on adapting to more diverse programming
activities.

2 Research Methodology

My research will focus on building a compiler-student friendship through the de-
sign of user-friendly compiler messages. I will investigate the following research
questions: Will a friendly compiler change students’ attitudes towards program-
ming, such as self-efficacy, motivation and interest level? Are there differences
in task completion, and compilation behaviors between groups? Moreover, as
prior studies by Arroyo et al.[1] and by Evans and Waring[6] showed, females
are more likely to be positively affected by affective and positive feedback. Thus I
will also investigate whether a more affective compiler has larger affect on female
students.

2.1 Compiler Design

Duck[5] defined relationship with friends as a list of provisions that we expect
from friends.

– Provision1: Belonging and a sense of reliable alliance. The existence of a
bond that can be trusted to be there for a partner when they need it.

– Provision2: Reassurance of worth and value, and an opportunity to help
others.

– Provision3: Emotional integration and stability. Friendships provide neces-
sary anchor points for opinions, beliefs and emotional responses.

Table 1 illustrates my approach to incorporate the three provisions into the
friendly compiler design targeted for middle school students. For each provision,
I explain how it can be interpreted in the context of programming, and give an
example of a traditional compiler message in comparison to a friendly compiler
message that incorporates the provision.

2.2 Experimental Design

To evaluate my design, i will use BlueJ, a free and open-source Java environ-
ment designed for novice programmers. Middle school students who have limited
knowledge about programming will be randomly split into a control group, where
they will use a traditional compiler, and an experimental group, where they will
use the friendly compiler. Students will complete programming tasks. These
groups will be assigned via balanced random assigment, but will be controlled
for gender and incoming competence.



Table 1.

Interpretation Traditional Compiler Mes-
sage

Friendly Compiler Message

Convey the idea that the
student and the compiler are
in a team to solve program-
ming tasks together

P.java:13:’;’expected I helped you find missing ’;’
on line 13. Lets work to-
gether and make this pro-
gram runs.

Express to students that
they are the compilers trust-
worthy friends, and the com-
piler needs students’ help in
order to compile

P.java:13: cannot resolve
symbol

Sorry, I’m designed to be
syntax sensitive. I need your
help fixing a symbol I don’t
understand on line 13

a) respond to students suc-
cess
b) tell students that their
mistakes are understandable
c) show appreciation for the
effort paid by the students

a)compilation successful
b)’;’expected (same errors
happened several times be-
fore)
c)’;’expected (after several
compilation errors in a row)

a)Great we made it!
b)I found missing ’;’. This is
a common error even for ex-
pert programmers
c)I found a missing ’;’. I
know debugging needs hard
work. Thanks for all the ef-
fort you’ve been put to help
me compile!

Before starting the programming activity, both groups will be given pre-
questionnaires that ask about their programming experience, their opinions
about programming and compilers, and their self-efficacy and motivation lev-
els. During the programming activity, students from both groups are allowed to
ask for help from observers, but each type of help will be recorded. BlueJ will be
instrumented to log data at each compilation. The logged data will include the
programming task’s level, the time of the compilation, the corresponding source
code, the compiler’s output messages, and the wait-time before the student starts
the next interaction with BlueJ. After the programming activity, students will be
given post questionnaires include the same questions as the pre-questionnaires.

2.3 Evaluation

My evaluation will test the below hypothesis: a friendly compiler will:

– Improve students’ self-efficacy and motivation in programing.
– Cause higher interest in and affection towards programming and the com-

piler?
– Help students persist through debugging. Thus, students will complete more

tasks before giving up
– Cause difference in compilation behaviors. Students with friendly compiler

will compile more frequently, and resume interactions with programming
environment faster.

– Have stronger effect on female student for one or more of the above hypoth-
esis



3 Conclusion

This study focuses on the re-design of a compiler that will build friendships
between itself and novice programmers. A controlled study will be used to in-
vestigate how a friendly compiler affects students attitudes, self-efficacy and
motivation towards programming, as well as their compilation behaviors.

I would like advice on the evaluation of students psychological attributes. My
plan involves a questionnaire to collect students attitude toward programming
and compiler, self-efficacy and motivation. I would like to be advised on the
design of survey questions or alternative approaches that can help me collect
information that best reflects students opinions.

Secondly, I would like to be advised on the design of my friendly compiler mes-
sages. The design of the compiler messages is highly subjective. What methodol-
ogy should I use to create these messages to verify it well incorporates provisions
goals, and well fits into the context of programming feedback?

References

1. I. Arroyo, B. P. Woolf, D. G. Cooper, W. Burleson, and K. Muldner. The impact
of animated pedagogical agents on girls’ and boys’ emotions, attitudes, behaviors
and learning. In Proceedings of the eleventh IEEE International Conference on
Advanced Learning Technologies, pages 506–510, 2011.

2. T. W. Bickmore and R. W. Picard. Establishing and maintaining long-term
human-computer relationships. ACM Transactions on Computer-Human Inter-
action, 12(2):293–327, 2005.

3. N. Bosch, S. DMello, and C. Mills. What emotions do novices experience during
their first computer programming learning session? In Proceedings of the sixteenth
international Conference on Artificial Intelligence in Education, pages 11–20, 2013.

4. K. E. Boyer, R. Phillips, M. D. Wallis, M. A. Vouk, and J. C. Lester. Investigating
the role of motivation in computer science education through one-on-one tutoring.
Computer Science Education,, 19(2):111136, 2009.

5. S. Duck. Understanding Relationships. Guilford Press, New York, USA, 1999.
6. C. Evans and M. Waring. Student teacher assessment feedback preferences: The

influence of cognitive styles and gender. Learning and Individual Differences,
21(3):271280, 2011.

7. . S. B. Kinnunen, P. Experiencing programming assignments in cs1: the emotional
toll. In Proceedings of the Sixth international workshop on Computing education
research, pages 77–86, 2010.

8. M. J. Lee and A. J. Ko. Personifying programming tool feedback improves novice
programmers’ learning. In Proceedings of the seventh international workshop on
Computing education research, pages 109–116, 2011.

9. A. D. Liem, S. Lau, and Y. Nie. The role of self-efficacy, task value, and achievement
goals in predicting learning strategies, task disengagement, peer relationship, and
achievement outcome. Contemporary Educational Psychology, 33(4):486–512, 2008.

10. P. L. Witt, L. R. Wheeless, and M. Allen. A meta analytical review of the rela-
tionship between teacher immediacy and student learning. Communication Mono-
graphs, 71(2):184–207, 2004.


